掃描二維碼
隨時(shí)隨地手機(jī)看文章
矢量量化(Vector Quantization)是一種極其重要的信號(hào)壓縮方法,廣泛應(yīng)用于語音、圖像信號(hào)壓縮等領(lǐng)域。信息論的一個(gè)分支——“率-畸變理論”指出,無論對(duì)于何種信息源,即使是無記憶的信息源(即各個(gè)采樣信號(hào)之間互相統(tǒng)計(jì)獨(dú)立),矢量量化總是優(yōu)于標(biāo)量量化,且矢量維數(shù)越大優(yōu)度越高。因此,目前國(guó)內(nèi)外對(duì)于矢量量化技術(shù)的研究非常廣泛而深入。平衡考慮量化效果和運(yùn)算復(fù)雜度,多級(jí)矢量量化(MSVQ)提供了一個(gè)很好的折衷辦法。
線性預(yù)測(cè)編碼(LPC)參數(shù)能很好地表征語音信號(hào)的短時(shí)譜包絡(luò)信息,在各種LPC參數(shù)中,線譜頻率(LSF)[1]較其它參數(shù)能更有效地表達(dá)LPC信息。K.K.Paliwal和B.S.Atal仔細(xì)研究了用24~26個(gè)比特量化一個(gè)10階LSF參數(shù)的方法,提出了分裂矢量量化(Split Vector Quantization)和多級(jí)矢量量化MSVQ(Multistage Vector Quantization)兩種方案,并且試驗(yàn)得到了用25比特的2級(jí)MSVQ能取得較好的量化效果(平均失真1dB,2~4dB概率小于2%,大于4dB為0)。
MSVQ算法有效減小了碼本容量,但如果在量化比特有限的情況下,想取得透明的量化效果,必須解決兩個(gè)問題:(1)怎樣搜索碼本得到最佳匹配索引;(2)怎樣設(shè)計(jì)碼本。在算法設(shè)計(jì)中這兩個(gè)問題必須統(tǒng)一考慮。對(duì)前一個(gè)問題,為了方便一般采用序列搜索算法,依次搜索得到各級(jí)的最佳匹配矢量。在碼本設(shè)計(jì)中,更多的也是分級(jí)依次進(jìn)行碼本訓(xùn)練,割裂了各級(jí)碼本之間的相關(guān)性。本文將著重研究多級(jí)矢量量化的聯(lián)合優(yōu)化碼本設(shè)計(jì)問題。
1 問題分析
傳統(tǒng)的MSVQ算法在LSF參數(shù)碼本設(shè)計(jì)時(shí)采用一種連續(xù)(stage-by-stage)的設(shè)計(jì)方法,第k級(jí)碼本只與前面的第1至第(k-1)級(jí)碼本有關(guān),而不考慮后續(xù)各級(jí)碼本,即將后續(xù)各級(jí)碼本內(nèi)容視為0。在量化時(shí),同樣只在本級(jí)尋找1個(gè)最佳匹配矢量,然后得到余量矢量送入下一級(jí)量化。量化過程可以用式(1)表示,假設(shè)有2級(jí)碼本,需要找出各級(jí)碼本索引:
在序列搜索算法中,搜索yi時(shí),假設(shè)zj為0,搜索zj時(shí)yi已經(jīng)固定。這樣的搜索算法顯然是一種次優(yōu)的搜索算法,解決這個(gè)問題的方法是全搜索[3]。全搜索是最優(yōu)的搜索算法,但是其計(jì)算復(fù)雜度卻是難以承受的。例如,一個(gè)25比特2級(jí)碼本(13-12結(jié)構(gòu)),其全搜索復(fù)雜度是上述連續(xù)搜索的2000倍以上。M進(jìn)制搜索[4]折衷解決了這個(gè)問題。在運(yùn)算量大大減小的情況下,取得了逼近全搜索的量化效果。
在碼本設(shè)計(jì)中,無論是經(jīng)典的GLA算法還是改進(jìn)的模擬退火(SA)算法,碼本設(shè)計(jì)都是逐級(jí)連續(xù)進(jìn)行的。利用各級(jí)碼本之間的相關(guān)性優(yōu)化碼本設(shè)計(jì),可以較明顯地改善MSVQ的量化效果。在應(yīng)用聯(lián)合碼本設(shè)計(jì)方法量化音頻DCT系數(shù)時(shí),已經(jīng)取得了大約0.4 dB的SNR改善[5]。本文在量化LSF參數(shù)時(shí),對(duì)比300步的SR算法,得到了大約0.05dB、約1bit的加權(quán)對(duì)數(shù)譜失真(WLSD)[6]的改進(jìn)效果。
2 算法說明
2.1 失真距離量度
對(duì)一個(gè)MSVQ碼本,為方便考慮假設(shè)共有2級(jí)碼本。LSF參數(shù)為10維矢量。對(duì)LSF參數(shù)而言,其敏感矩陣(sensitivity matrix)是對(duì)角陣,因此可以用加權(quán)最小均方誤差(WMSE)代替加權(quán)對(duì)數(shù)譜失真(WLSD)作為失真量度[6]。量化失真
r的經(jīng)驗(yàn)值一般為0.15。
2.2 理論推導(dǎo)
對(duì)一個(gè)訓(xùn)練矢量集X和兩級(jí)碼本Y、Z,可以對(duì)X中每個(gè)矢量進(jìn)行2級(jí)全搜索,得到最佳索引值對(duì)(i,j)。根據(jù)i和j的不同可以對(duì)X中每個(gè)矢量進(jìn)行聚類。假設(shè)S為對(duì)第一級(jí)碼字形成的聚類,Si為所有X中第一級(jí)量化索引為i的訓(xùn)練矢量集合。同樣假設(shè)R為第二級(jí)碼字聚類,可知,{S1,S2,…,SK1}和{R1,R2,…,RK2}均是同一X集合的不同劃分。對(duì)于X∈Si,平均量化失真為:
可以令v=E{x-U|x∈Si},則第三項(xiàng)為0。第二項(xiàng)恒為非負(fù),所以
通過多次迭代,可以得到聯(lián)合優(yōu)化的最優(yōu)碼本。
2.3 算法描述
(1)設(shè)置初始碼本,讀入訓(xùn)練矢量文件,并對(duì)其進(jìn)行兩級(jí)碼本全搜索,得到針對(duì)兩級(jí)碼本的聚類{S1,S2,…,SK1}和{R1,R2,…,RK2}。假設(shè)訓(xùn)練矢量個(gè)數(shù)為num,對(duì)所有訓(xùn)練矢量計(jì)算此時(shí)的量化失真之和,失真測(cè)度采用WLSD距離。設(shè)置迭代最大步數(shù)N,設(shè)置初始步數(shù)n=0;
(2)n=n+1,利用式(9)更新第一級(jí)碼本;
(3)重新對(duì)訓(xùn)練矢量集進(jìn)行全搜索,得到新的索引值對(duì)(i, j),然后利用式(10)更新第二級(jí)碼本;
(4)再次對(duì)訓(xùn)練矢量集進(jìn)行量化搜索,得到新的索引值對(duì)(i, j),并重新計(jì)算量化總畸變Dn;
(5)判斷n=N?若n<N,跳轉(zhuǎn)至(2)繼續(xù)進(jìn)行迭代;若n=N,結(jié)束迭代,保存更新后的碼字至碼本文件。
2.4 算法的進(jìn)一步優(yōu)化
上述聯(lián)合優(yōu)化MSVQ算法中,很重要的一步就是對(duì)訓(xùn)練矢量進(jìn)行聚類,使每個(gè)訓(xùn)練矢量得到一個(gè)最匹配的索引值對(duì)(i, j)。(i, j)應(yīng)當(dāng)是通過全搜索得到的全局最佳匹配矢量。在不需要在線更新碼本的情況下,全搜索是可以采用的。然而如果在矢量維數(shù)較高時(shí),想減小碼本訓(xùn)練的運(yùn)算量,也可以采用M進(jìn)制序列搜索的方法。取M=8在實(shí)驗(yàn)中得到了很好的效果。這樣即可得到一個(gè)性能近似的簡(jiǎn)化版JCO-MSVQ碼本設(shè)計(jì)方法。
另外,在碼本設(shè)計(jì)中,可能出現(xiàn)聚類中無訓(xùn)練矢量,即出現(xiàn)空聚類的情況。這時(shí)可以刪除該空聚類,并將包含訓(xùn)練矢量最多的那個(gè)聚類抖動(dòng)成兩個(gè)聚類。這樣可以獲得更小的聯(lián)合量化誤差,如圖1所示。
3 實(shí)驗(yàn)結(jié)果和分析
實(shí)際應(yīng)用中,碼本訓(xùn)練采用107 MB的語音文件,得到342302幀LSF參數(shù)(10維)和加權(quán)系數(shù),訓(xùn)練矢量集足夠大。在實(shí)際的2kbps語音編碼算法中,對(duì)LSF參數(shù)進(jìn)行3級(jí)矢量量化,比特分配為9/8/6,共23bits。利用聯(lián)合優(yōu)化碼本生成算法進(jìn)行300步迭代,與SR算法的第三級(jí)300步迭代結(jié)果進(jìn)行比較,得到訓(xùn)練碼本總畸變數(shù)據(jù),如圖2所示。
可以看到,同樣步數(shù)的JCO-MSVQ算法較SR算法能取得更小的量化畸變。SR算法經(jīng)過一定步數(shù)的迭代,基本沒有下探的空間。而JCO-MSVQ算法則能繼續(xù)優(yōu)化碼本,獲得更好的量化效果。并且,與SR算法不同,JCO-MSVQ算法中量化畸變是單調(diào)遞減的,因在訓(xùn)練過程中每一步都是最優(yōu)的(簡(jiǎn)化算法中是多進(jìn)制搜索,因而是次優(yōu)的)。
統(tǒng)計(jì)量化譜失真,聯(lián)合碼本優(yōu)化MSVQ比其他的MSVQ有明顯的改善。在同一個(gè)LSF量化器中分別采用23bits SR碼本(碼本1)、24bits SR碼本(碼本2)和23bits聯(lián)合優(yōu)化碼本(碼本3),測(cè)試語音為一個(gè)3.5MB的語音文件,既有男聲也有女聲,共11348幀LSF參數(shù)。統(tǒng)計(jì)量化譜失真得到表1所示數(shù)據(jù)。
從表1數(shù)據(jù)可以看到,同是23bits的量化,聯(lián)合碼本設(shè)計(jì)MSVQ與應(yīng)用SR算法生成碼本的MSVQ相比較,有大約1個(gè)比特的改善,接近于應(yīng)用SR算法24bits量化的效果。甚至優(yōu)于文獻(xiàn)[2]中MSVQ算法的26bits量化(平均譜失真0.93dB)。平均譜失真為0.87dB,大于4dB的譜失真統(tǒng)計(jì)為0,達(dá)到了透明量化的要求。
本文研究結(jié)果已經(jīng)成功應(yīng)用于1/2kbps可變速率聲碼器項(xiàng)目中。
本文來源:由半導(dǎo)體行業(yè)觀察編譯自網(wǎng)絡(luò)近日,全球開放硬件標(biāo)準(zhǔn)組織RISC-VInternational宣布,RISC-V成員已經(jīng)批準(zhǔn)了15項(xiàng)新規(guī)范(代表40多個(gè)擴(kuò)展),用于免費(fèi)開放的RISC-V指令集架構(gòu)(ISA)。最值得...
關(guān)鍵字: RISC-V VECTOR 數(shù)據(jù)中心 虛擬機(jī)安立公司為 MN4765B 系列 O/E 校準(zhǔn)模塊推出兩個(gè)選件,旨在針對(duì)光電組件(如調(diào)制器、光接收器和集成光收發(fā)模塊)的特性提供高精度、高靈活性且具有成本效益的測(cè)量解決方案。有了這些新選件,MN4765B 即可與...
關(guān)鍵字: VECTOR 雙波長(zhǎng) ST RS21ic訊,未來的智能交通系統(tǒng)會(huì)采用IEEE 802.11p的無線標(biāo)準(zhǔn),作為“車輛—車輛”、“車輛—路側(cè)”(V2I)的通訊方式,通過這些方式,車...
關(guān)鍵字: 車聯(lián)網(wǎng) COM VECTOR 測(cè)試方案21ic訊 2015年9月17日,致力于亞太地區(qū)市場(chǎng)的領(lǐng)先半導(dǎo)體元器件分銷商—大聯(lián)大控股宣布,其旗下品佳推出NXP JN5168+LPC3240智能網(wǎng)關(guān)解決方案。 圖示1-大聯(lián)大品佳代理的NXP的JN5...
關(guān)鍵字: NXP 智能網(wǎng)關(guān) LPC 品佳集團(tuán)本設(shè)計(jì)以控制能力突出,外設(shè)接口豐富,運(yùn)算速度快的ARM芯片LPC1788作為控制、數(shù)據(jù)處理核心,使用了位于AHB總線上能進(jìn)行快速訪問的多個(gè)GPIO口以擴(kuò)展定制的寬溫液晶屏,對(duì)各
關(guān)鍵字: LPC 芯片技術(shù) 系列芯片 ARM內(nèi)核摘要:隨著煤礦自動(dòng)化、智慧礦山的快速發(fā)展,工作面支架電液控系統(tǒng)的功能也更加復(fù)雜。為了滿足支架電液控系統(tǒng)在實(shí)時(shí)姿態(tài)控制、數(shù)據(jù)傳輸以及與工作面采煤機(jī)、刮板機(jī)、視頻監(jiān)控等系統(tǒng)聯(lián)動(dòng)方面的要求,本文基于LPC4320異
關(guān)鍵字: LPC 雙核處理器 數(shù)據(jù)傳輸 人機(jī)交互早期單片機(jī)應(yīng)用軟件開發(fā)完成以后,是通過相應(yīng)的編程器將程序燒寫入單片機(jī)的ROM或EPROM里,這樣每一次擦寫程序都需要將芯片從電路板上拆卸下來,不利于研制開發(fā),對(duì)于日后的產(chǎn)品軟件升級(jí)也非常不方便。隨著新一代單片
關(guān)鍵字: 遠(yuǎn)程通信 ISP LPC 下位機(jī)