在電源技術領域,PFC(Power Factor Correction,功率因數(shù)校正)電源與開關電源是兩個緊密關聯(lián)卻又截然不同的概念。很多人容易將兩者混淆,認為PFC電源就是一種特殊的開關電源,或者開關電源天然具備PFC功能。實際上,PFC電源是在開關電源基礎上增加了功率因數(shù)校正電路的電源系統(tǒng),其核心目標是提高電源的功率因數(shù),減少對電網(wǎng)的諧波污染。
在功率因數(shù)校正(PFC)電路中,電感作為能量存儲與轉(zhuǎn)換的核心元件,其磁芯材料的選擇直接決定了系統(tǒng)的效率、體積與可靠性。當開關頻率突破50kHz進入高頻時代,鐵氧體與金屬磁粉芯的損耗特性呈現(xiàn)顯著分化——前者以低損耗優(yōu)勢主導高頻場景,后者則憑借高飽和能力在特定領域堅守陣地。本文將從材料特性、損耗機制、溫升模型三個維度,揭示兩種材料在高頻PFC中的選型邏輯。
在電力電子技術向高頻化、高功率密度發(fā)展的趨勢下,功率因數(shù)校正(PFC)電路的效率瓶頸逐漸聚焦于升壓整流環(huán)節(jié)。傳統(tǒng)硅基超快恢復二極管(FRD)因反向恢復損耗大、EMI噪聲高等問題,已難以滿足高頻應用需求。碳化硅肖特基二極管(SiC SBD)憑借其獨特的材料特性,成為突破這一瓶頸的關鍵器件。本文將從器件特性、損耗機制及工程應用三個維度,系統(tǒng)闡述碳化硅二極管在高頻PFC中的效率提升方法。
在電力電子設備中,低電壓啟動能力是衡量系統(tǒng)可靠性的核心指標之一。尤其在電網(wǎng)波動頻繁的工業(yè)場景或偏遠地區(qū),電源設備需在85VAC至265VAC的寬輸入范圍內(nèi)穩(wěn)定啟動。這一需求對輸入電容容量設計、功率因數(shù)校正(PFC)控制策略以及系統(tǒng)級優(yōu)化提出了嚴苛挑戰(zhàn)。本文將從電容容量計算、PFC啟動機制及動態(tài)響應優(yōu)化三個維度,解析低電壓啟動設計的關鍵技術路徑。
中國上海,2025年7月22日——全球知名半導體制造商ROHM(總部位于日本京都市)今日宣布,推出新的參考設計“REF67004”,該設計可通過單個微控制器控制被廣泛應用于消費電子電源和工業(yè)設備電源中的兩種轉(zhuǎn)換器——電流臨界模式PFC(Power Factor Correction)*1和準諧振反激式*2轉(zhuǎn)換器。通過將ROHM的優(yōu)勢——由Si MOSFET等功率器件和柵極驅(qū)動器IC組成的模擬控制Power Stage電路,與以低功耗LogiCoA?微控制器為核心的數(shù)字控制電源電路相結(jié)合,推出基于這種模擬和數(shù)字融合控制技術的“LogiCoA?電源解決方案”。
現(xiàn)代數(shù)據(jù)中心功率需求激增,48V母線架構(gòu)逐漸取代傳統(tǒng)12V系統(tǒng),高功率密度、高效率和可靠保護成為行業(yè)核心挑戰(zhàn)。德州儀器全新電源管理芯片TPS1685和氮化鎵(GaN)器件LMG3650,為AI數(shù)據(jù)中心提供智能、可靠的電源管理方案,助力行業(yè)在高性能計算與能源效率之間找到完美平衡。
PFC就是功率因數(shù)校正的意思,主要用來表征電子產(chǎn)品對電能的利用效率。功率因數(shù)越高,說明電能的利用效率越高。
在現(xiàn)代電力系統(tǒng)中,功率因數(shù)校正(Power Factor Correction, PFC)技術扮演著至關重要的角色。它不僅有助于提高電網(wǎng)的穩(wěn)定性,減少能源浪費,還能降低運行成本。高功率因數(shù)(PF)意味著電力設備的輸入電流與電網(wǎng)電壓同相位,從而最大限度地減少了無功功率的損耗。本文將深入探討如何利用Boost拓撲結(jié)構(gòu)實現(xiàn)高功率因數(shù)校正,并解析其工作原理和優(yōu)勢。
在電力系統(tǒng)中,這些諧波可能會導致電話傳輸干擾和導體老化等問題。因此,控制總THD非常重要。較低的 THD 意味著較低的峰值電流、較少的發(fā)熱、較低的電磁輻射以及較低的電機鐵芯損耗。
相信很少有朋友關心PFC功率矯正電路中電感之后的那個二極管,但是從事電路設計多年的高手一定能夠看出此二極管的作用。實際上,此二極管的作用在電路中非常重要,其能夠在一定程度上避免電感自感產(chǎn)生反向電流,對電路造成破壞。
在電力電子領域,功率因數(shù)校正(Power Factor Correction, PFC)技術是提高電力系統(tǒng)效率、減少能源浪費的重要手段。而在PFC電路中,電感作為關鍵元件,其周期內(nèi)的上升與下降電流關系對于實現(xiàn)功率因數(shù)校正和電壓調(diào)節(jié)至關重要。
在現(xiàn)代照明技術中,功率因數(shù)校正(Power Factor Correction,簡稱PFC)已成為不可或缺的一環(huán)。隨著節(jié)能意識的提升和照明技術的不斷進步,PFC在照明電路中的應用愈發(fā)廣泛,其重要性也日益凸顯。
在電力系統(tǒng)中,功率因數(shù)校正(Power Factor Correction,簡稱PFC)是一項至關重要的技術,用于改善電流與電壓之間的相位差,從而提高電力系統(tǒng)的效率。其中,主動式PFC和被動式PFC是兩種主要的實現(xiàn)方式。
在傳統(tǒng)的連續(xù)導通模式 (CCM) 控制下,需要一種經(jīng)濟高效的解決方案來改善輕負載下的功率因數(shù)校正 (PFC) 并實現(xiàn)峰值效率,同時縮小無源元件,而這變得越來越困難。工程師們正在對復雜的多模式解決方案進行大量研究,以解決這些問題 [1]、[2],這些方法很有吸引力,因為它們可以縮小電感器的尺寸,同時通過輕負載下的軟開關提高效率。
在電力系統(tǒng)中,這些諧波可能導致從電話傳輸干擾到導體退化等一系列問題;因此,控制總 THD 非常重要。較低的 THD 意味著較低的峰值電流、較少的熱量、較低的電磁輻射和較低的電機鐵芯損耗。
同步整流MOSFET是一種基于金屬氧化物半導體場效應管(MOSFET)的電子器件,廣泛應用于交流電到直流電的轉(zhuǎn)換過程中。它能夠?qū)崿F(xiàn)高效率的整流,提供穩(wěn)定的直流輸出。
PFC全稱“Power Factor Correction”,意為“功率因數(shù)校正”。PFC電路即能對功率因數(shù)進行校正,或者說能提高功率因數(shù)的電路。是開關電源中很常見的電路。
許多國家/地區(qū)都普遍使用燃氣和燃油鍋爐以及熔爐來為住宅和商業(yè)室內(nèi)空間提供空間和水加熱??梢蕴娲@些基于化石燃料的系統(tǒng)的電熱泵被視為空間和水加熱應用中脫碳的關鍵要素。在本文中,我們將總結(jié)一個可用于為熱泵供電的功率校正因子 (PFC) 級參考設計示例。德州儀器 (TI) 的這個參考設計使用基于氮化鎵 (GaN) 的 PFC來提高功率轉(zhuǎn)換效率,并提供了一個如何使用寬帶隙 (WBG) 半導體的示例例如碳化硅(SiC)和GaN可以進一步激勵日常能源需求的電氣化。
在電力電子領域中,功率因數(shù)校正(PFC)技術是提高電能轉(zhuǎn)換效率、減少諧波污染的重要手段。特別是在高功率應用中,交錯式連續(xù)導通模式(CCM)PFC電路因其高效、低紋波等優(yōu)點而備受青睞。本文將詳細探討交錯式CCM PFC電路中的數(shù)字控制器設計,重點分析FAN9673這一高性能數(shù)字控制器的特點與應用。
在現(xiàn)代電子設備和電力系統(tǒng)中,AC-DC轉(zhuǎn)換器作為電能轉(zhuǎn)換的橋梁,其性能與效率直接關系到整個系統(tǒng)的穩(wěn)定性和可靠性。隨著技術的不斷進步,傳統(tǒng)的AC-DC轉(zhuǎn)換方案已難以滿足日益增長的能效和體積要求。在此背景下,集成式μPFC(功率因數(shù)校正)功率因數(shù)校正IC應運而生,以其出色的性能和廣泛的應用范圍,成為了AC-DC轉(zhuǎn)換領域的新寵。本文將深入探討適用于多種AC-DC應用的集成式μPFC功率因數(shù)校正IC的技術特點、優(yōu)勢及應用場景。