
在航空航天、工業(yè)控制等高可靠性領(lǐng)域,系統(tǒng)需在運行中動態(tài)更新功能以適應任務變化,同時保持未修改模塊的持續(xù)運行。傳統(tǒng)FPGA全片重配置需中斷系統(tǒng)運行,且配置時間長達數(shù)百毫秒?;贔PGA的部分重配置(Partial Reconfiguration, PR)技術(shù)通過僅更新局部邏輯,實現(xiàn)功能動態(tài)切換與資源高效管理,成為解決這一挑戰(zhàn)的關(guān)鍵方案。
在5G通信、工業(yè)控制等高性能嵌入式系統(tǒng)中,Cyclone V FPGA憑借其低功耗與高性價比特性成為主流選擇。其片上存儲器資源(M10K和MLAB)的優(yōu)化配置直接影響系統(tǒng)性能與資源利用率。本文基于Quartus Prime工具鏈,結(jié)合Cyclone V器件特性,提出一套從代碼級到架構(gòu)級的存儲器優(yōu)化與布局策略。
在FPGA數(shù)字電路設(shè)計中,時鐘域交叉(CDC)同步是確保多時鐘系統(tǒng)穩(wěn)定運行的核心技術(shù)。當數(shù)據(jù)在異步時鐘域間傳輸時,若未采取有效同步措施,可能導致亞穩(wěn)態(tài)傳播、數(shù)據(jù)丟失或功能錯誤。本文結(jié)合Verilog HDL實現(xiàn)與靜態(tài)時序分析(STA),探討時鐘域交叉同步模塊的設(shè)計方法。
作為一名本科電氣工程專業(yè)的學生,我想要一種親身實踐的方式來更多地參與FPGA,因為我一直很享受與ELEC 326在一起的時光。這個項目特別突出,因為我喜歡游戲《pong》,也對游戲中的AI (npc和對手)的運作方式感興趣。
當今的電子器件,尤其是高性能處理器和FPGA,對電力的需求不斷攀升。在此背景下,電源管理解決方案必須不斷進化,以提供更高的電流并確保設(shè)計靈活性。本文探討了如何將多通道電源管理集成電路(PMIC)用作單通道大電流電源。并聯(lián)多個穩(wěn)壓輸出可以提升總電流能力,同時保持嚴格的電壓調(diào)節(jié)和熱平衡。這種技術(shù)不僅簡化了電源架構(gòu),而且增強了設(shè)計復用,減少了電路板空間,并改善了數(shù)字信號處理器、處理器、FPGA和微控制器等復雜電子器件中的熱分布。
在數(shù)據(jù)安全需求日益增長的今天,AES(高級加密標準)作為對稱加密算法的代表,憑借其高安全性與高效性,在FPGA硬件加速領(lǐng)域占據(jù)核心地位。本文聚焦AES-256在FPGA上的實現(xiàn),從狀態(tài)機控制與密鑰擴展兩大核心模塊出發(fā),結(jié)合Verilog代碼與工程實踐,提供一套可落地的實操方案。
在高速數(shù)據(jù)存儲與處理場景中,DDR4控制器作為FPGA與內(nèi)存之間的橋梁,其時序約束精度與帶寬利用率直接影響系統(tǒng)性能。本文從時序約束核心參數(shù)、PCB布局優(yōu)化、AXI協(xié)議調(diào)優(yōu)三個維度,結(jié)合工程實踐案例,系統(tǒng)闡述DDR4控制器設(shè)計方法論。
在實時數(shù)據(jù)處理場景中,F(xiàn)PGA憑借其并行計算能力和硬件可重構(gòu)特性,已成為實現(xiàn)高性能排序算法的核心載體。以金融高頻交易系統(tǒng)為例,其要求在微秒級延遲內(nèi)完成百萬級數(shù)據(jù)排序,傳統(tǒng)CPU架構(gòu)難以滿足需求,而FPGA通過并行排序算法與流水線控制的深度融合,可實現(xiàn)納秒級響應。本文將結(jié)合BRAM資源分配策略與流水線控制技術(shù),探討FPGA并行排序算法的優(yōu)化實現(xiàn)。
你有沒有想過,停車傳感器、障礙物探測機器人,甚至是自動水龍頭等日常設(shè)備是如何如此準確地測量距離的?我想探索同樣的想法,但使用FPGA來實現(xiàn),其中一切都發(fā)生在硬件邏輯層面,而不是依賴于微控制器。這個項目就是這樣開始的。
光子集成電路(PIC)憑借其高帶寬、低功耗的優(yōu)勢,正成為5G基站、數(shù)據(jù)中心光模塊的核心組件。而FPGA以其靈活可編程特性,在數(shù)字信號處理、通信系統(tǒng)等領(lǐng)域占據(jù)主導地位。兩者的混合集成被視為突破算力與帶寬瓶頸的關(guān)鍵路徑,但技術(shù)融合過程中仍面臨多重挑戰(zhàn)。
在數(shù)字化浪潮席卷全球的今天,F(xiàn)PGA技術(shù)正成為驅(qū)動創(chuàng)新的核心引擎。2025年11月12日,米爾出席安路科技2025 AEC FPGA技術(shù)沙龍·北京專場,與技術(shù)專家及行業(yè)伙伴齊聚一堂,探討前沿技術(shù)趨勢,解鎖場景化定制方案,共建開放共贏的FPGA新生態(tài)!
11月5日,Altera在北京舉辦了媒體溝通會。這是自英特爾旗下FPGA業(yè)務被私募股權(quán)公司銀湖資本收購多數(shù)股權(quán)并重新以“Altera”之名獨立運營后,其新任CEO在中國的首次公開亮相。
2025年10月28日,由機器視覺產(chǎn)業(yè)聯(lián)盟主辦的“2025深圳機器視覺展暨機器視覺技術(shù)及工業(yè)應用研討會(Vision China)”在深圳國際會展中心(寶安)9號館隆重啟幕。展會以“VISION+AI賦能電子制造升級”為主題,聚焦人工智能與機器視覺技術(shù)在電子制造全產(chǎn)業(yè)鏈中的融合與創(chuàng)新,集中展示AI技術(shù)在提升視覺系統(tǒng)能力、突破行業(yè)應用瓶頸方面的前沿成果與解決方案。
為搭載先進系統(tǒng)級芯片(SoC)、FPGA及微處理器的工業(yè)、汽車、服務器、電信與數(shù)據(jù)通信應用提供運行保障
在FPGA設(shè)計中,乘法器作為核心運算單元,其資源消耗常占設(shè)計總量的30%以上。尤其在實現(xiàn)高精度計算或大規(guī)模矩陣運算時,DSP塊的過度使用會導致時序收斂困難和成本上升。通過移位加法替代傳統(tǒng)乘法器,可在保持計算精度的同時,顯著降低資源占用。本文將深入探討這一優(yōu)化技術(shù)的實現(xiàn)原理與工程實踐。
在人工智能硬件加速領(lǐng)域,F(xiàn)PGA憑借其可重構(gòu)計算架構(gòu)和低延遲特性,成為深度神經(jīng)網(wǎng)絡(luò)(DNN)部署的核心平臺。與傳統(tǒng)GPU的固定計算流水線不同,F(xiàn)PGA通過動態(tài)配置硬件資源,可實現(xiàn)從卷積層到全連接層的全流程優(yōu)化。本文將從算法級優(yōu)化、硬件架構(gòu)設(shè)計、協(xié)同設(shè)計方法三個維度,解析FPGA在DNN部署中的關(guān)鍵策略。
在物聯(lián)網(wǎng)、邊緣計算和便攜式設(shè)備快速發(fā)展的背景下,F(xiàn)PGA的動態(tài)電源管理技術(shù)已成為突破功耗瓶頸的核心手段。通過動態(tài)電壓頻率調(diào)節(jié)(DVFS)、多電源域劃分和自適應電源門控等創(chuàng)新技術(shù),現(xiàn)代FPGA可在保持高性能的同時,將功耗降低60%以上。本文以Xilinx Zynq UltraScale+ MPSoC和萊迪思CrossLinkU-NX為例,系統(tǒng)解析動態(tài)電源管理的技術(shù)原理與實踐路徑。
在衛(wèi)星通信載荷向高吞吐量、低時延方向演進的過程中,傳統(tǒng)靜態(tài)FPGA架構(gòu)面臨輻射導致配置失效、資源利用率低下等挑戰(zhàn)。Microchip RT PolarFire系列FPGA在衛(wèi)星通信中的實踐表明,動態(tài)重構(gòu)技術(shù)結(jié)合抗輻射設(shè)計,可將系統(tǒng)可靠性提升40%,資源利用率提高60%。這種技術(shù)組合已成為低軌衛(wèi)星星座、深空探測等場景的核心支撐。
在6G通信、量子計算與人工智能的交叉領(lǐng)域,太赫茲級通信帶寬已成為突破算力瓶頸的核心需求。傳統(tǒng)電互連方案因RC延遲和功耗限制,難以支撐超過100Gbps的傳輸速率。而光子-電子混合集成FPGA通過硅光模塊與高速電子電路的深度融合,開辟了從GHz向THz跨越的新路徑。
腦機接口(BCI)通過解碼神經(jīng)電信號實現(xiàn)人腦與外部設(shè)備的直接交互,其核心挑戰(zhàn)在于如何從微伏級噪聲中提取高保真神經(jīng)信號。嵌入式FPGA(現(xiàn)場可編程門陣列)憑借其并行計算能力、低延遲特性及動態(tài)重構(gòu)優(yōu)勢,已成為突破這一瓶頸的關(guān)鍵硬件平臺。本文從信號采集、預處理算法及硬件實現(xiàn)三個維度,解析FPGA在腦機接口中的技術(shù)路徑。